A unifying approach to the construction of circulant preconditioners

نویسندگان

  • Ivan Oseledets
  • Eugene Tyrtyshnikov
چکیده

The main result is the “black dot algorithm” and its fast version for the construction of a new circulant preconditioner for Toeplitz matrices. This new preconditioner C is sought directly as a solution to one of possible settings of the approximation problem A ≈ C + R, where A is a given matrix and R should be a “low-rank” matrix. This very problem is a key to the analysis of superlinear convergence properties of already established circulant and other matrix-algebra preconditioners. In this regard, our new preconditioner is likely to be the best of all possible circulant preconditioners. Moreover, in contrast to several “function-based” circulant preconditioners used for “bad” symbols, it is constructed entirely from the entries of a given matrix and performs equally as the best of the known or better than those for the same symbols. AMS classification: 15A12; 65F10; 65F15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circulant Preconditioners Constructed From Kernels

We consider circulant preconditioners for Hermitian Toeplitz systems from the view point of function theory. We show that some well-known circulant preconditioners can be derived from convoluting the generating function f of the Toeplitz matrix with famous kernels like the Dirichlet and the Fej er kernels. Several circulant precondition-ers are then constructed using this approach. Finally, we ...

متن کامل

Circulant Preconditioners for Ill-Conditioned Hermitian Toeplitz Matrices

In this paper, we propose a new family of circulant preconditioners for solving ill-conditioned Hermitian Toeplitz systems Ax = b. The eigenval-ues of the preconditioners are given by the convolution products of the generating function f of A with some summation kernels. When f is a nonnegative 2-periodic continuous function deened on ?; ] with a zero of order 2p, we show that the circulant pre...

متن کامل

A Note on Superoptimal Generalized Circulant Preconditioners

Circulant matrices can be effective preconditioners for linear systems of equations with a Toeplitz matrix. Several approaches to construct such preconditioners have been described in the literature. This paper focuses on the superoptimal circulant preconditioners proposed by Tyrtyshnikov, and investigates a generalization obtained by allowing generalized circulant matrices. Numerical examples ...

متن کامل

The Best Circulant Preconditioners for Hermitian Toeplitz Systems

In this paper, we propose a new family of circulant preconditioners for ill-conditioned Hermitian Toeplitz systems Ax = b. The preconditioners are constructed by con-volving the generating function f of A with the generalized Jackson kernels. For an n-by-n Toeplitz matrix A, the construction of the preconditioners only requires the entries of A and does not require the explicit knowledge of f. ...

متن کامل

Preconditioners for Nondeenite Hermitian Toeplitz Systems 1

This paper is concerned with the construction of circulant preconditioners for Toeplitz systems arising from a piecewise continuous generating function with sign changes. If the generating function is given, we prove that for any " > 0, only O(log N) eigenvalues of our preconditioned Toeplitz systems of size N N are not contained in ?1?"; ?1+"] 1?"; 1+"]. The result can be modiied for trigonome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006